Московский государственный университет путей сообщения (МИИТ)

Кафедра «Химия и инженерная экология»

Группа	Студент	(ФИО студента, дата выполнения)
Преподаватель	(ФИО преподавателя)	Отчёт принят
0	ГЧЁТ ПО ЛАБОРА	ТОРНОЙ РАБОТЕ № 13
<u>Направлени</u>	е протекания окисли	тельно-восстановительных реакций
Цель работы: Изучение реакций восстановительны	-	различных средах. Расчет ЭДС оксилительно-
Необходимые ср	едства	
<u>Посуда:</u> пробирки <u>Реактивы:</u>	I.	
•	, Na ₂ SO ₃ , CH ₃ COOH, HO	Cl, NaOH.
Основные теорет	гические положения	
	текания окислительно-) реакции, которую расс	восстановительных реакций определяют по читывают по формуле:
E° =		
		направлении.
Если $E < 0$, то pea	кция протекает в	направлении.
Значения станда пар приведены в	-	тенциалов окислительно-восстановительных
Можно ли исполь	зовать бромную воду ф(Br_2/Br^-) = 1,07 B для окисления:
A) Fe ²⁺ до Fe ³⁺ (ф	o = 0.77 B	

B) Mn^{2+} до MnO_4^- ($\phi^\circ=1,51$ В)? Для процессов, в которых участвуют ионы водорода, потенц

Б) Cu^+ до Cu^{2+} ($\phi^\circ = 0.15$ В)

Для процессов, в которых участвуют ионы водорода, потенциал окислительновосстановительной реакции будет зависеть от значения рН, то есть от среды в растворе.

Например, перманганат-ион в разных средах (при разном значении концентрации H⁺) будет обладать **разной** окислительно-восстановительной способностью. И кроме того, в разных средах образуются различные продукты реакции.

Перманганат-ион в кислой, нейтральной и щелочной среде дает следующие продукты:

Ион	Среда	Продукт восстановления иона MnO ₄ -	φ°, Β
	Кислая (H ⁺)		
MnO ₄ -	Нейтральная (H ₂ O)		
	Щелочная (ОН⁻)		

Как	видно	ИЗ	таблицы,	перманганат-ион	обладает	максимально	окислительной
способностью в			среде, ми	среде.			

Экспериментальная часть

Опыт 1. Взаимодействие перманганата калия с сульфитом натрия в кислой среде

 $K\ 1$ мл раствора $KMnO_4$ прилить столько же раствора серной кислоты, а затем – раствор Na_2SO_3 до полного обесцвечивания раствора.

Написать уравнение реакции и расставить коэффициенты с помощью электронного баланса:

$$KMnO_4 \ + \ Na_2SO_3 \ + \ H_2SO_4 \rightarrow \ Na_2SO_4 \ + \qquad \qquad + \qquad \qquad +$$

Рассчитать Е реакции =

Опыт 2. Взаимодействие перманганата калия с сульфитом натрия в нейтральной среде

К 1 мл раствора КМnO₄ прилить раствор Na₂SO₃. Записать наблюдения.

Написать уравнение реакции и расставить коэффициенты с помощью электронного баланса:

$$KMnO_4 + Na_2SO_3 + H_2O \rightarrow Na_2SO_4 + + +$$

Рассчитать Е реакции =

Опыт 3. Взаимодействие перманганата калия с сульфитом натрия в щелочной среде

К 1 мл раствора КМпО₄ прилить такой же объем раствора щелочи, а затем – раствор Na_2SO_3 . Отметить окраску раствора.

Написать уравнение реакции и расставить коэффициенты с помощью электронного баланса:

$$KMnO_4 + Na_2SO_3 + KOH \rightarrow Na_2SO_4 + + + +$$

Рассчитать Е реакции =

Опыт 4. Диспропорционирование манганата калия

Быстро к раствору, полученному в опыте 3, добавить уксусной кислоты. Раствор краснеет вследствие образования КМпО4, одновременно выпадает бурый осадок диоксида марганца.

$$K_2MnO_4 + CH_3COOH \rightarrow K_2MnO_4 + MnO_2 +$$

Выполните следующие задания

- 1. Какие из приведенных ниже реакций могут протекать самопроизвольно?
 - A) $H_3PO_4 + HI = H_3PO_3 + I_2 + H_2O$
 - Б) $H_3PO_3 + SnCl_2 + H_2O = 2HCl + Sn + H_3PO_4$
 - B) $H_3PO_3 + 2AgNO_3 + H_2O = 2Ag + 2HNO_3 + H_3PO_4$
- 2. Можно ли в водном растворе восстановить соль железа (III) до соли железа (II):
 - а) бромидом калия; б) иодидом калия? Ответ подтвердить расчетом.
- 3. Какие из перечисленных ионов можно восстановить раствором H₂S?
 - A) Fe³⁺ до Fe²⁺ Б) Cu²⁺ до Cu⁺

 - B) Sn⁴⁺ до Sn²⁺